Visualization of xenotransplanted human rhabdomyosarcoma after transfection with red fluorescent protein.

نویسندگان

  • Guido Seitz
  • Steven W Warmann
  • Jörg Fuchs
  • Ulrike A Mau-Holzmann
  • Peter Ruck
  • Heike Heitmann
  • Robert M Hoffman
  • Jens Mahrt
  • Gerhard A Müller
  • Johannes T Wessels
چکیده

BACKGROUND/AIMS Discosoma sp red fluorescent protein (DsRed2) is a newly developed marker for in vivo labeling studies in different biologic systems. After vector transfection, DsRed2 is expressed in mammalian cells and can be detected by fluorescence microscopy. The aims of this study were to establish a DsRed2-transfected human rhabdomyosarcoma (RMS) cell line and to perform a xenotransplantation on nude mice to use imaging as a tool for further basic research studies on this neoplasm. PROCEDURE The human alveolar RMS cell line Rh30 was transfected with the pDsRed2-N1 vector by lipofection. The DsRed2-positive cells were sorted out by fluorescence-activated cell sorting analysis 96 hours after transfection and selected in culture with G418. Expression of DsRed2 messenger RNA was assessed using single-cell reverse transcriptase polymerase chain reaction after laser microdissection. Transfected and parental cells were characterized cytologically, cytogenetically, immunohistochemically, and in vivo after subcutaneous injection in NMRI (nu/nu) nude mice. RESULTS After vector transfection, a pure and stable DsRed2-positive cell line was established by monoclonal growth of the cells. Reverse transcriptase polymerase chain reaction revealed constant expression of DsRed2 messenger RNA in fluorescencing cells. There was no difference between transfected and parental cells by means of cell morphology and desmin expression. Clonal cells (1 x 10(6)) were used for xenotransplantation. Tumors were visualized noninvasively through the skin of the mice using specific emission and excitation filters. Tumor vascularization and vessel growth could be discriminated from tumor tissue using this imaging system. CONCLUSION This is the first report on successful transfection of an RMS cell line with red fluorescent protein followed by xenotransplantation into nude mice. This model can serve as an imaging tool for in vivo studies investigating tumor biology and metastases of human RMS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Efficient Transfection of Dendritic Cells Derived from Esophageal Squamous Cell Carcinoma Patient: Optimization with Green Fluorescent Protein and Validation with Tumor RNA as a Tool for Immuno-genetherapy

This study was conducted to optimize a highly efficient mRNA transfection into dendritic cells (DC) derived from esophageal squamous cell carcinoma (ESCC) patients. Applying an electroporation technique, in vitro synthesized Green Fluorescent Protein (GFP) mRNA was transfected as an indicator into the DCs derived from a healthy donor. Flow cytometry revealed 84.9% transfection efficiency for DC...

متن کامل

In vitro Labeling of Neural Stem Cells with Poly-L-Lysine Coated Super Paramagnetic Nanoparticles for Green Fluorescent Protein Transfection

Background: The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). Methods: The SPION was prepared and coated with PLL as transfection agent...

متن کامل

A Model to Study the Phenotypic Changes of Insect Cell Transfection by Copepod Super Green Fluorescent Protein (cop-GFP) in Baculovirus Expression System

Background: Baculovirus expression system is one of the most attractive and powerful eukaryotic expression systems for the production of recombinant proteins. The presence of a biomarker is required to monitor transfection efficiency or protein expression levels in insect cells. Methods: The aim of this study was to construct a baculovirus expression vector encoding a copepod super green fluore...

متن کامل

Genetically Engineered Mesenchymal Stem Cells Stably Expressing Green Fluorescent Protein

Objective(s) Mesenchymal stem cells (MSCs) are nonhematopoietic stromal cells that are capable of differentiating into and contribute to the regeneration of mesenchymal tissues. Human mesenchymal stem cells (hMSCs) are ideal targets in cell transplantation and tissue engineering. Enhanced green fluorescent protein (EGFP) has been an important reporter gene for gene therapy. The aim of this stu...

متن کامل

Optimization of SW480 Colon Cancer Cells Transfection with Lipofectamine 2000

ABSTRACT           Background and Objectives: Nonviral carriers including those based on synthetic cationic lipids, offer several advantages over the viral counterparts. These carriers are able to form complexes with nucleic acids and deliver genes into the cells via the cellular endocytosis pathway, without significant toxicity. The level of transg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of pediatric surgery

دوره 41 8  شماره 

صفحات  -

تاریخ انتشار 2006